
MONOMETHYLIDYNECYANINES WITH UNSYMMETRICAL STRUCTURES AND DIMETHYLIDYNEMEROCYANINES FROM N-METHYL-2-ARYL-5,6-BENZOLEPIDINIUM SALTS

N. S. Kozlov, O. D. Zhikhareva, and S. A. Batishche UDC 547.832.5'831.1'789.6.3

N-Methyl-2-aryl-5,6-benzolepidinium quaternary salts undergo cyanine condensation with quinoline and 2-methylmercaptobenzothiazole ethiodides to give monomethylidynecyanines and also with 3-ethyl-5-N-phenylacetamidomethylenerhodanine to give dimethylidynemero-cyanines. The introduction of a phenyl group into the 2 position of the quinoline ring causes a bathochromic shift of the absorption maxima of the dyes.

Monomethylidynecyanine dyes of the quinoline series and dimethylidynemerocyanines are used as sensitizers for silver halide emulsions [1]. As previously demonstrated [2], the catalytic condensation of arylidene-2-naphthylamines with acetone in acid media gives 2-aryl-4-methyl-5,6-benzoquinolines, which are readily quaternized with methyl iodide [3].

The goal of the present study was the preparation of unsymmetrical monomethylidynecyanines (I-VI) and dimethylidynemerocyanines (VII-IX) by condensation of 2-aryl-4-methyl-5,6-benzoquinoline methiodides (X-XII) with quinoline and 2-methylmercaptobenzothiazole ethiodides and also with 3-ethyl-5-N-phenylacet-amidomethylenerhodanine via the following schemes:

 $R = C_6 H_5$; p-CH₃OC₆H₄; 3.4-(OCH₂O) C₆H₃

Institute of Physical Organic Chemistry, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1619-1621, December, 1972. Original article submitted November 22, 1971.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Comp.	R	Мр , ° С	Empirical formula			Calc.,%		0 %	2	Yield,%
				N	s	· N	S	λ _m nm	50	
I	C ₆ H ₅	150—152		5,1		4,9		615	4,47	82
II	p-CH ₃ OC ₆ H ₄	151—153	C ₃₃ H ₂₉ N ₂ OI	5,1		4,7		615	4,30	51
Ш	$3,4(OCH_2O)C_6H_3$	178—180	$C_{33}H_{27}N_2O_2I$	4,7 4,3 4,2		4,6		617	4,98	33
IV VI VII VIII IX	C ₆ H ₅ <i>p</i> -CH ₃ OC ₆ H ₄ 3,4 (OCH ₂ O) C ₆ H ₃ C ₆ H ₅ <i>p</i> -CH ₃ OC ₆ H ₄ 3,4 (OCH ₂ O) C ₆ H ₃	$\begin{array}{r} 227229 \\ 247248 \\ 245246 \\ 242 \\ 222 \\ 211212 \end{array}$	$\begin{array}{c} C_{30}H_{25}N_2SI\\ C_{31}H_{27}N_2OSI\\ C_{31}H_{25}N_2O_2SI\\ C_{27}H_{22}N_2OS_2\\ C_{28}H_{24}N_2O_2S_2\\ C_{28}H_{22}N_2O_3S_2 \end{array}$	1,2	5,2 5,3 5,6 14,2 12,9 12,8		5,3	645	5,10 5,18 5,20 5,15 5,27 4,54	20 10

TABLE 1. Monomethylidynecyanines and Dimethylidynemerocyanines

The physical constants of the synthesized dyes and the analytical data are presented in Table 1.

The dyes obtained are violet (I-III), red (IV-VI), and green (VII-IX) crystalline substances. Monomethylidynecyanines I-VI are quite soluble in alcohols, acetone, pyridine, and acetic anhydride but insoluble in ether, water, hydrocarbons, CCl_4 , and dioxane. Dimethylidynemerocyanines VII-IX are soluble in all of the solvents indicated above except for water.

A small bathochromic shift of the absorption maximum is observed when one compares the absorption spectra of dyes I-III (λ_{max} 615, 617 nm) with the corresponding unsubstituted (in the 2 position of the quinoline ring) monomethylidynecyanine (λ_{max} 608 nm), which was previously obtained in [4]. The presence of a bathochromic effect as compared with the corresponding 2-unsubstituted dyes is also characteristic for quinothiacyanines and dimethylidynemerocyanines. The shift in the absorption maximum to the long-wave region of the spectrum is apparently due to the introduction of an additional phenyl group into the dye molecules. The introduction of substituents (CH₃O and $-OCH_2O-$) into the phenyl ring is, except for VIII, only slightly reflected in the position of the absorption maximum.

EXPERIMENTAL

The starting heterocyclic bases (2-phenyl-, p-methoxyphenyl-, and piperonyl-4-methyl-5,6-benzo-quinolines) were obtained via the method in [2].

The methiodides of the bases were obtained by heating the latter with methyl iodide and acetic anhydride in an ampule via the method in [3].

The dyes were obtained via the methods in [5,6,7].

<u>1-Methyl-2-piperonyl4-[(1'-ethyldihydro-4'-quinolylidene)methyl]</u>-5,6-benzoquinolinium Iodide (III). A mixture of 0.23 g (1 mmole) of 2-piperonyl-4-methyl-5,6-benzoquinoline methiodide, 0.28 g (2 mmole) of quinoline ethiodide, 0.14 g (1 mmole) of anhydrous K_2CO_3 , and 4 ml of absolute ethanol was heated on a water bath for 2 h. The dye was precipitated by the addition of ether, removed by filtration, and washed with water. Two crystallizations from alcohol gave 0.1 g of III (Table 1).

Compounds I and II (Table 1) were similarly obtained.

 $\frac{1-\text{Methyl-2-(p-methoxyphenyl)-4-[(3'-ethyl-2'-benzothiazolinylidene)methyl]-5,6-benzoquinolinium}{\text{Iodide (V). A mixture of 0.22 g (0.5 mmole) of 2-(p-methoxyphenyl)-4-methyl-5,6-benzoquinoline meth-iodide, 0.17 g (0.5 mmole) of 2-methylmercaptobenzothiazole ethiodide, 0.14 g (1 mmole) of anhydrous K₂CO₃, and 4 ml of absolute ethanol was refluxed for 1.5 h. The mixture was cooled, and the precipitate was removed by filtration and washed with water, alcohol, and ether. Crystallization from alcohol gave 0.06 g of V (Table 1).$

Compounds IV and VI (Table 1) were similarly obtained.

 $\frac{3-\text{Ethyl-5-(1'-methyl-2'-phenyl-5',6'-benzodihydroquinolylidene-4'-ethylidene)thiazolidine-2-thion-$ 4-one (VII). A mixture of 0.2 g (0.5 mmole) of 2-phenyl-4-methyl-5,6-benzoquinoline methiodide, 0.15 g (0.5 mmole) of 3-ethyl-5-N-phenylacetamidomethylenerhodanine, 0.2 g of anhydrous sodium acetate, and 4 ml of absolute ethanol was refluxed for 1.5 h. The mixture was cooled, and the crystals were removed by filtration and washed with water and alcohol to give 0.12 g of a product with mp 203°. Crystallization from alcohol gave 0.7 g of VII (Table 1). Dyes VIII and IX (Table 1) were similarly obtained.

The absorption spectra of ethanol solutions of the dyes were recorded with a Specord UV VIS spectro-photometer.

LITERATURE CITED

- 1. K. Meyer, Fortschr, Photogr., Leipzig, <u>1</u>, 195 (1938).
- 2. N. S. Kozlov and V. V. Misenzhnikov, Khim. Geterotsikl. Soedin., 866 (1968).
- 3. N.S. Kozlov and G.S. Shmanai, Vestsi Akademii Navuk Belorussk. SSR, Ser. Khim. Navuk, <u>4</u>, 70 (1971).
- 4. Ya. O. Gorichok, G. T. Pilyugin, and S. I. Gorichok, Khim. Geterotsikl. Soedin., 598 (1966).
- 5. G. T. Pilyugin and E. P. Opanasenko, Zh. Obshch. Khim., 29, 3065 (1959).
- 6. F. M. Hamer, J. Chem. Soc., 206 (1928).
- 7. I. I. Levkoev, N. N. Sveshnikov, and V. V. Durmashkina, Zh. Obshch. Khim., 10, 773 (1940).